Numberings and Randomness
نویسندگان
چکیده
We prove various results on effective numberings and Friedberg numberings of families related to algorithmic randomness. The family of all Martin-Löf random left-computably enumerable reals has a Friedberg numbering, as does the family of all Π 1 classes of positive measure. On the other hand, the Π 1 classes contained in the Martin-Löf random reals do not even have an effective numbering, nor do the left-c.e. reals satisfying a fixed randomness constant. For Π 1 classes contained in the class of reals satisfying a fixed randomness constant, we prove that at least an effective numbering exists.
منابع مشابه
Numberings Optimal for Learning
This paper extends previous studies on learnability in non-acceptable numberings by considering the question: for which criteria which numberings are optimal, that is, for which numberings it holds that one can learn every learnable class using the given numbering as hypothesis space. Furthermore an effective version of optimality is studied as well. It is shown that the effectively optimal num...
متن کاملPartial Numberings and Precompleteness
Precompleteness is a powerful property of numberings. Most numberings commonly used in computability theory such as the Gödel numberings of the partial computable functions are precomplete. As is well known, exactly the precomplete numberings have the effective fixed point property. In this paper extensions of precompleteness to partial numberings are discussed. As is shown, most of the importa...
متن کاملAn Isomorphism Theorem for Partial Numberings
As is well-known, two equivalent total numberings are computably isomorphic, if at least one of them is precomplete. Selivanov asked whether a result of this type is true also for partial numberings. As has been shown by the author, numberings of this kind appear by necessity in studies of effectively given topological spaces like the computable real numbers. In the present paper it is demonstr...
متن کاملKolmogorov numberings and minimal identification
Identification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions from their graphs. To address certain problems in minimal identification for Gödel numberings, Freivalds later considered minimal identification in Kolmogorov...
متن کاملA note on partial numberings
The different behaviour of total and partial numberings with respect to the reducibility preorder is investigated. Partial numberings appear quite naturally in computability studies for topological spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite numbered set is neither complete nor contains a least element. Friedberg numberings are no longe...
متن کامل